更新時間:2024-01-12 16:36:20作者:貝語網(wǎng)校
如圖所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點(diǎn),則 MC2-MB2等于
A.9
B.35
C.45
D.無法計算
C
在RT△ABD及ADC中可分別表示出BD2及CD2,在RT△BDM及CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.
解答:在RT△ABD和RT△ADC中,
BD2=AB2-AD2,CD2=AC2-AD2,
在RT△BDM和RT△CDM中,
BM2=BD2+MD2=AB2-AD2+MD2,MC2=CD2+MD2=AC2-AD2+MD2,
∴MC2-MB2=(AC2-AD2+MD2)-(AB2-AD2+MD2)
=AC2-AB2
=45.
故選C.
點(diǎn)評:本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點(diǎn),重點(diǎn)還是在于勾股定理的熟練掌握.