更新時(shí)間:2024-01-12 16:38:52作者:貝語(yǔ)網(wǎng)校
已知代數(shù)式x4+6x2y+9y2+2x2+6y+4的值為7,那么代數(shù)式x4+6x2y+9y2-2x2-6y-1的值是
A.?2
B.?-2或14
C.14
D.-2
B
由題意可知,(x2+3y)2+2(x2+3y)-3=0,求得x2+3y的值,把原式分解因式成與x2+3y有關(guān)的式子,代入求值.
解答:原式可化為:(x2+3y)2+2(x2+3y)+4=7,
即(x2+3y-1)(x2+3y+3)=0,
解得:x2+3y=1或x2+3y=-3,
代數(shù)式x4+6x2y+9y2-2x2-6y-1=(x2+3y)2-2(x2+3y)-1①,
(1)把x2+3y=1代入①得:原式=1-2-1=-2;
(2)把x2+3y=-3代入①得:原式=9+6-1=14.
故選B.
點(diǎn)評(píng):本題考查了分組分解法分解因式,解答此題需要將原式因式分解,然后把x2+3y整體作為一個(gè)未知數(shù)求解.